基于SSMB原理,能获得高功率、高重频、窄带宽的相干辐射,波长可覆盖从太赫兹到极紫外(EUV)波段,有望为光子科学研究提供广阔的新机遇。《自然》评阅人对该研究高度评价,认为“展示了一种新的方法论”,“必将引起粒子加速器和同步辐射领域的兴趣”。《自然》相关评论文章写道:“该实验展示了如何结合现有两类主要加速器光源——同步辐射光源及自由电子激光——的特性。SSMB光源未来有望应用于EUV光刻和角分辨光电子能谱学等领域。”该论文一经刊发,立即引起国内外学术界及产业界的高度关注。
图1. SSMB原理验证实验示意图(图片来源:《自然》)
图2. SSMB原理验证实验结果(图片来源:《自然》)
实验中,研究团队利用波长1064纳米的激光操控柏林MLS储存环内的电子束,使电子束绕环一整圈(周长48米)后形成精细的微结构,也即微聚束。微聚束会在激光波长及其高次谐波上辐射出高强度的窄带宽相干光,实验通过探测该辐射验证微聚束的形成。微聚束的形成,证明了电子的光学相位能以短于激光波长的精度逐圈关联,使得电子可被稳态地束缚在激光形成的光学势井中,验证了SSMB的工作机理。实验示意如图1所示,部分实验结果如图2所示。
SSMB概念由斯坦福大学教授、清华大学杰出访问教授赵午与其博士生Daniel Ratner于2010年提出。赵午持续推动SSMB的研究与国际合作。2017年,唐传祥与赵午发起该项实验,唐传祥研究组主导完成了实验的理论分析和物理设计,并开发测试实验的激光系统,与合作单位进行实验,并完成了实验数据分析与文章撰写。
有望为EUV光刻光源提供新技术路线 引发国际社会重点关注
“SSMB光源的潜在应用之一是作为未来EUV光刻机的光源,这是国际社会高度关注清华大学SSMB研究的重要原因。”唐传祥告诉记者。
在芯片制造的产业链中,光刻是集成电路芯片制造中复杂和关键的工艺步骤,光刻机是芯片产业链中必不可少的精密设备。光刻机的曝光分辨率与波长直接相关,半个多世纪以来,光刻机光源的波长不断缩小,芯片工业界公认的新一代主流光刻技术是采用波长为13.5纳米光源的EUV(极紫外光源)光刻。EUV光刻机工作相当于用波长只有头发直径一万分之一的极紫外光,在晶圆上“雕刻”电路,最后将让指甲盖大小的芯片包含上百亿个晶体管,这种设备工艺展现了人类科技发展的顶级水平。荷兰ASML公司是目前世界上唯一的EUV光刻机供应商,最新型NXE:3400C单台售价大于1.5亿欧元。
大功率的EUV光源是EUV光刻机的核心基础。目前ASML公司采用的是高能脉冲激光轰击液态锡靶,形成等离子体然后产生波长13.5纳米的EUV光源,功率约250瓦。而随着芯片工艺节点的不断缩小,预计对EUV光源功率的要求将不断提升,达到千瓦量级。
“简而言之,光刻机需要的EUV光,要求是波长短,功率大。”唐传祥说。大功率EUV光源的突破对于EUV光刻进一步的应用和发展至关重要。唐传祥说:“基于SSMB的EUV光源有望实现大的平均功率,并具备向更短波长扩展的潜力,为大功率EUV光源的突破提供全新的解决思路。”
EUV光刻机的自主研发还有很长的路要走,基于SSMB的EUV光源有望解决自主研发光刻机中最核心的“卡脖子”难题。这需要SSMB EUV光源的持续科技攻关,也需要上下游产业链的配合,才能获得真正成功。
攻关正当其时 彰显国际合作格局
清华SSMB团队从2017年4月开始SSMB原理验证实验的理论分析和数值模拟。当年7月21日,唐传祥与赵午在清华组织召开首届SSMB合作会议,牵头成立了国际SSMB研究组,联合中、德、美等国家的科研人员,开始推动包括SSMB原理验证实验在内的各项研究。经过四年攻关,SSMB研究组取得了多项重要进展,成果领先世界。
“SSMB采用激光来对电子进行聚束,相比同步辐射光源常用的微波,聚束系统的波长缩短了5到6个数量级。因此,要验证SSMB的原理,需要加速器对电子纵向位置(相位)逐圈变化有非常高的控制精度,而德国PTB的MLS储存环在这一方面最接近SSMB的实验需求。经过老师们的前期联系与沟通,德国的HZB及PTB两家机构积极加入研究团队,与我们开展合作研究。”全程参与赴德实验的清华大学工物系2015级博士生邓秀杰介绍说。
从2017年始,清华团队成员先后8次前往柏林,参与从实验准备到操作的各个环节,经过长时间的努力,实验于2019年8月18日取得成功。邓秀杰说:“SSMB涉及的物理效应多,实验难度大,团队经历了多次失败的尝试,在实验过程中不断加深对物理问题和实际加速器运行的认识,直到最后将问题一一解决。无法进行现场实验的时候,我们也没有停止工作,会就之前采集的实验数据进行理论分析,定期召开工作会议,以及进行邮件或在线讨论等。”“此外,SSMB实验团队是一个国际合作团队,从开始的磨合到逐渐熟悉理解再到渐入佳境,整个团队一致认为我们真正实现了‘1+1>>2’,大家对未来进一步的合作都充满了信心。”邓秀杰补充道。
破解“卡脖子”难题 清华勇担重担
“我国高校要勇挑重担,释放高校基础研究、科技创新潜力”,2020年9月22日,习近平总书记在教育文化卫生体育领域专家代表座谈会上,对高校加强创新、突破关键核心技术寄予厚望。
清华大学传承弘扬“顶天、立地、树人”的清华科研传统,增强服务国家科技自立自强的责任感、使命感和紧迫感。深化科研体制机制改革,创新科研组织模式。加强“从0到1”的基础研究,加快关键核心技术特别是“卡脖子”问题攻关。
瞄准世界科技前沿,对症下药。此次清华大学工程物理系唐传祥研究组与国际合作团队在“稳态微聚束”(SSMB)这样一个有望解决关键领域、需要破解“卡脖子”课题的地方下大力气,在前瞻性、战略性领域持续加大关键核心技术攻关创新力度,着力增强自主创新能力,服务国家创新驱动发展战略。
目前,清华大学正积极支持和推动SSMB EUV光源在国家层面的立项工作。清华SSMB研究组已向国家发改委提交“稳态微聚束极紫外光源研究装置”的项目建议书,申报“十四五”国家重大科技基础设施。
清华大学工物系唐传祥教授和HZB的Jörg Feikes博士为本文通讯作者,清华大学工物系2015级博士生邓秀杰为第一作者。该研究得到了清华大学自主科研专项的支持。
论文链接:https://doi.org/10.1038/s41586-021-03203-0
素材提供:工物系
编辑:李华山
审核:吕婷
文章来源:清华大学新闻网